www.rsc.org/chemcomm

ChemComm

Peter B. Hitchcock, Michael F. Lappert* and Jacek E. Nycz

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk

Received (in Cambridge, UK) 4th February 2003, Accepted 18th March 2003 First published as an Advance Article on the web 16th April 2003

Treatment of the β -diketimine HL with successively LiBuⁿ and PCl₂Ph gave the first *C*-centered monodentate β diketiminate PCl(Ph)L 1; with C₈K 1 underwent reductive dechlorination yielding 2, a novel N-P^{III}-P^{III}-C=C heterocycle.

The role of β -diketiminates as supporting ligands for a wide spectrum of metal complexes is rapidly growing.¹ This may be judged not only by the burgeoning literature (more than 50 papers in 2002), but also by the increasing range of their applications as catalysts (α -olefin polymerisation,² ring-opening polymerisation of lactide³ or related monomers,⁴ and copolymerisation of an epoxide and CO₂⁵), structural models for a Type 1 Cu protein active site,⁶ and as spectator ligands for unusual metal complexes, such as [Al(L)(NC₆H₃Pri₂-2,6)]⁷ and [{Fe(L)}₂(μ -N₂)]⁸ [L = {N(C₆H₃Pri₂-2,6)C(Me)}₂CH].

A variety of ligand-to-metal bonding modes has been reported for metal β -diketiminates. The ligand may be terminal or bridging, almost invariably (but see ref. 9) monoanionic, often π -delocalised and for *N*,*N'*-chelated complexes the metallacycle is planar or boat-shaped. β -Diketiminates are now known of 42 elements, but there is only a single phosphorus compound **A**.¹⁰ All examples to date, bar one **B**,¹¹ have been of *N*-, (*N*,*N'*)-, or (*N*,*N'*,*C*)-centred ligands (but see penultimate paragraph).

Our earlier work on β -diketiminates was on *N*,*N*'-bis-(trimethylsilyl) ligands such as [{N(SiMe_3)C(Ph)}_2CH]⁻. We chose not to use these in the present report on P(III) chemistry, since from a 1-azaallyl precursor and a P(III) chloride there was facile loss of SiClMe₃, as in the formation of **C** from Li{N(SiMe₃)C(Bu^t)CHSiMe₃} + PCl₃.¹²

We now report the synthesis and structure of the crystalline phosphorus(m) complex **1**, which thus far is unique in being a *C*-centred monodentate β -diketiminate (but see penultimate paragraph). Furthermore, we find that its reductive dechlorination affords the crystalline, X-ray-authenticated novel¹³ heterocycle **2**.

Thus, treatment of the β -diketimine **3**¹⁴ with successively LiBuⁿ and phenyldichlorophosphine yielded (i, then ii, in Scheme 1) **1**, while the latter with potassium graphite gave (iii

in Scheme 1) **2**, as well as **3** and the *meso-* (**4**) and *rac-* (**5**) diphosphines Ph(L)P–P(L)Ph [L = {N(C₆H₃Pri₂-2,6)C(Me)}₂CH]. Colourless crystals of **1** (> 60%) and **2** (*ca.* 10%) and the diketimine **3** (authentic^{14b} X-ray structure) were obtained by crystallisation from hexane; the yields have not been optimised.

Each of **1** and **2** gave satisfactory microanalyses, multinuclear NMR spectral solution and mass spectral data,[†] which were consistent with the X-ray crystal structures,[‡] illustrated in Figs. 1 (1) and 2 (2); evidence for compounds **4** and **5** at present rests solely on their NMR spectra: δ [³¹P{¹H}] 9.49 (4) and -23.44 (5) in C₆D₆ at 293 K. We suggest that reduction of **1** proceeds sequentially by dechlorination to afford the radical 'P(L)Ph, its coupling to yield **4**/**5** and elimination of LH, as shown in **6**.

The NCCCN bond lengths in crystalline **1** are closely similar to those of 3,^{14b} with the exception of the significantly longer C2–C3 bond in **1**. The parameters around the pyramidal phosphorus atom are unexceptional.¹⁵

The heterocyclic ring of crystalline 2 is non-planar (unlike that of the almost planar cation of the phosphonium salt D^{12}) with the atom P 2 0.36(1) Å out-of-the almost planar

Scheme 1 Reagents and conditions: i, LiBuⁿ in C₆H₁₄, Et₂O, -78 °C; ii, PCl₂Ph, -78 °C; iii C₈K, Et₂O, 20 °C (R = C₆H₃Pri₂-2,6).

Fig. 1 Molecular structure of crystalline **1**. Selected bond lengths (Å) and angles (°): P–Cl 2.129(2), P–C2 1.773(5), P–C30 1.828(6), C1–C2 1.398(7), C2–C3 1.488(7), C1–N1 1.329(7), C3–N2 1.302(6); C2–P–Cl 107.90(19), C2–P–C30 102.8(2), C1–P–C30 100.2(2), C1–C2–C3 120.7(5), C1–C2–P 114.6(4), C3–C2–P 124.3(4).

Fig. 2 Molecular structure of crystalline **2**. Selected bond lengths (Å) and angles (°): P1–P2 2.2036(8), P1–N1 1.756(2), P2–C2 1.828(2), N1–C1 1.384(2), C1–C2 1.366(3), C2–C3 1.463(3), C3–N2 1.290(3), C18–N1 1.449(3); N1–P1–P2 93.43(6), P1–P2–C2 90.66(7), P1–N1–C1 117.97(13), N1–C1–C2 118.42(18), C1–C2–P2 117.09(15), P2–P1–C6 99.76(4), N1–P1–C6 102.27(9), P1–P2–C2 90.66(7), P1–P2–C12 96.92(7), C2–P2–C12 102.02(9).

P1N1C1C2 array. The geometrical parameters are appropriate for the illustrated structure **2**; for example, the P–P bond length is in the normal range for a diphosphine.¹⁶

Compound **1** may well be the first of a family of *C*-centred β -diketiminates. The fact that mononuclear P(III) compounds are rarely four-coordinate (but see **A**¹⁰) is a pointer to new experiments; those related to i and ii of Scheme 1 involving in place of PClPh₂ a non-metal chloride such as pivaloyl and trimethylsilyl are in hand.

We thank the Royal Society for the award of an R.S./NATO fellowship to J.E.N.

Note added to proof: In the proof stage, we became aware of a paper (also received on 4th February 2003) reporting an analogue of 2 in which the Cl atom of 2 was replaced by Ph.¹⁷

Notes and references

† Selected spectroscopic data: **1** ¹H NMR (293 K, C₆D₆): δ 1.04–1.22 (4d, 24 H, CHCH₃), 2.12 (s, 6 H, CCH₃), 3.07 (sept, 2 H, CHCH₃), 3.18 (sept, 2 H, CHCH₃), 6.99–7.15 (m, 9 H, aromatic), 7.75–7.80 (m, 2 H, aromatic), 15.53 (s, 1 H, NH); ¹³C{¹H} NMR (C₆D₆): δ 20.99 (s, CCH₃), 21.30 (s, CCH₃), 23.37 (s, CHCH₃), 23.46 (s, CHCH₃), 24.25 (s, CHCH₃),

24.48 (s, CHCH₃), 28.58 (s, CHCH₃), 28.99 (s, CHCH₃), 99.01 [d, ${}^{1}J({}^{13}C-{}^{31}P)$ 41.5, CP], 123.86, 123.89, 126.43, 127.73, 127.79, 127.84, 128.84, 128.95, 129.05, 129.30, 139.73, 141.88 (aromatic), 143.78 [d, ${}^{1}J({}^{13}C-{}^{31}P)$ 33.2, *ipso*-C], 172.01 [d, ${}^{2}J({}^{13}C-{}^{31}P)$ 28.2 Hz, CCH₃]; ${}^{31}P{}^{1}H{}$ NMR (C₆D₆): δ 94.12; MS (*mz* (%, assignment)): 561 (4, [**1**]+).

2 ¹H NMR (293 K, C₆D₆): δ 0.39–1.15 (5d, 15 H, CH*CH*₃), 1.21–1.25 (m, 9 H, CH*CH*₃), 2.10 [d, $^{4}J(^{1}H-^{31}P)$ 1.7, 3 H, C*CH*₃], 2.33 (s, 3 H, C*CH*₃), 3.09 (sept, 2 H, CHCH₃), 3.24 (sept, 2 H, CHCH₃), 7.06–7.22 (m, 12 H, aromatic), 7.72–7.77 (m, 2 H, aromatic), 7.84–7.87 (m, 2 H, aromatic); $^{13}C{^{1}H}$ NMR (C₆D₆): δ 19.24 [d, $J(^{13}C-^{31}P)$ 2.2, CHCH₃], 22.60 [d, $J(^{13}C-^{31}P)$ 7.7, CHCH₃], 23.01 [d, $^{3}J(^{13}C-^{31}P)$ 10.8, CCH₃], 23.63 [d, $J(^{13}C-^{31}P)$ 3.4, CHCH₃], 23.97 [d, $^{3}J(^{13}C-^{31}P)$ 5.7, CCH₃], 28.23 [d, $J(^{13}C-^{31}P)$ 3.6, CHCH₃], 23.41, 23.53, 24.25, 28.75, 28.89 (ss), 108.89–147.83 (aromatic), 162.32 [s, C(CH₃)N], 166.44 [d, $J(^{13}C-^{31}P)$ 20.1 Hz, C(CH₃)N]; $^{31}P{^{1}H}$ NMR (C₆D₆): δ 58.89 [d, $^{1}J(^{31}P-^{31}P)$ 229.5], -11.88 [d, $^{1}J(^{31}P-^{31}P)$ 229.5 Hz]; MS (mz (%, assignment)): 633 (24, [2]+).

[‡] *Crystal data:* **1**: C₃₅H₄₆ClN₂P, M = 561.16, orthorhombic, space group *Pna2*₁ (No.33), a = 14.5108(8), b = 25.9696(13), c = 8.4582(4) Å, U = 3187.4(3) Å³, Z = 4, μ (Mo–K α) 0.20 mm⁻¹. Final residual was *R1* = 0.056 for the 2746 reflections with $I > 2\sigma(I)$ and w $R_2 = 0.136$ for all the 3317 reflections collected. CCDC 203507.

2 C₄₁H₅₀N₂P₂·C₆H₆, M = 710.88, monoclinic, space group $P_{21/n}$ (No.14), a = 14.5205(3), b = 19.8810(5), c = 15.4891(4) Å, $\beta = 110.874(1)^{\circ}$, U = 4178.0(2) Å³, Z = 4, μ (Mo–K α) = 0.14 mm⁻¹. Final residual was $R_I = 0.048$ for 5536 reflections with $I > 2\sigma(I)$ and $wR_2 = 0.109$ for all the 6913 reflections collected. CCDC 203508. See http:// www.rsc.org/suppdata/cc/b3/b301294h/ for crystallographic files in .cif or other electronic format.

- 1 L. Bourget-Merle, M. F. Lappert and J. R. Severn, *Chem. Rev.*, 2002, **102**, 3031.
- 2 E.g. [Zr{N(SiMe₃)C(Ph)C(H)C(Bu¹)NiMe₃}Cl₃]: M. F. Lappert and D.-S. Liu, Netherlands Pat., 1994, 9401515; Idem, J. Organomet. Chem. 1995, 500, 203.
- 3 V. C. Gibson, E. L. Marshall, D. Navarro-Llobet, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 2002, 4321 and references therein.
- 4 L. R. Rieth, D. R. Moore, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 15239 and references therein.
- 5 S. D. Allen, D. R. Moore, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2002, **124**, 14284 and references therein.
- 6 D. J. E. Spencer, A. M. Reynolds, P. L. Holland, B. A. Jazdzewski, C. Duboc-Toia, L. L. Pape, S. Yokota, Y. Tachi, S. Itoh and W. B. Tolman, *Inorg. Chem.*, 2002, **41**, 6307 and references therein.
- 7 N. J. Hardman, C. Cui, H. W. Roesky, W. H. Fink and P. P. Power, *Angew. Chem., Int. Ed. Engl.*, 2001, **40**, 2172.
- 8 J. M. Smith, R. J. Lachicotte, K. A. Pittard, T. R. Cundari, G. Lukat-Rodgers, K. R. Rodgers and P. L. Holland, J. Am. Chem. Soc., 2001, 123, 9222.
- 9 A. G. Avent, A. V. Khvostov, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 2002, 1410.
- 10 M. Schiffer and M. Scheer, Angew Chem., Int. Ed. Engl., 2001, 40, 3413.
- 11 B. Räke, F. Zülch, Y. Ding, J. Prust, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, Z. Anorg. Allg. Chem., 2001, 627, 836.
- 12 P. B. Hitchcock, M. F. Lappert and M. Layh, J. Organomet. Chem., 1999, 580, 386.
- 13 No N-PIII-PIII-C=C heterocycle is listed in the Beilstein database.
- 14 (a) J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall, J. C. Calabrese and S. D. Arthur, *Organometallics*, 1997, **16**, 1514; (b) M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky and P. P. Power, *J. Chem. Soc., Dalton Trans.*, 2001, 3465.
- 15 (a) R. J. Wehmschulte, M. A. Khan and S. I. Hossain, *Inorg. Chem.*, 2001, **40**, 2756; (b) A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk and M. D. Roden, *Eur. J. Inorg. Chem.*, 2001, 1729.
- 16 S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne and P. P. Power, *J. Am. Chem. Soc.*, 2001, **123**, 9045 any references therein.
- 17 P. J. Ragogna, N. Burford, M. D'eon and R. McDonald, *Chem. Commun.*, 2003, 1052.