Synthesis, structure and reductive dechlorination of the \boldsymbol{C}-centred phosphorus(III) $\boldsymbol{\beta}$-diketiminate $\mathrm{PCl}(\mathbf{P h}) \mathrm{L}[\mathrm{L}=$

Peter B. Hitchcock, Michael F. Lappert* and Jacek E. Nycz
The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk

Received (in Cambridge, UK) 4th February 2003, Accepted 18th March 2003
First published as an Advance Article on the web 16th April 2003

Treatment of the $\boldsymbol{\beta}$-diketimine HL with successively $\mathrm{LiBu}{ }^{\mathrm{n}}$ and $\mathrm{PCl}_{2} \mathrm{Ph}$ gave the first C-centered monodentate β diketiminate $\mathrm{PCl}(\mathrm{Ph}) \mathrm{L} 1$; with $\mathrm{C}_{8} \mathrm{~K} 1$ underwent reductive dechlorination yielding 2 , a novel $\stackrel{\text { N-PIII-PIII-C }=\mathbf{C}}{ }$ heterocycle.

The role of β-diketiminates as supporting ligands for a wide spectrum of metal complexes is rapidly growing. ${ }^{1}$ This may be judged not only by the burgeoning literature (more than 50 papers in 2002), but also by the increasing range of their applications as catalysts (α-olefin polymerisation, ${ }^{2}$ ring-opening polymerisation of lactide ${ }^{3}$ or related monomers, ${ }^{4}$ and copolymerisation of an epoxide and $\mathrm{CO}_{2}{ }^{5}$), structural models for a Type 1 Cu protein active site, ${ }^{6}$ and as spectator ligands for unusual metal complexes, such as $\left[\mathrm{Al}(\mathrm{L})\left(\mathrm{NC}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\right]^{7}$ and $\left[\{\mathrm{Fe}(\mathrm{L})\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{8}\left[\mathrm{~L}=\left\{\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}-2,6\right) \mathrm{C}(\mathrm{Me})\right\}_{2} \mathrm{CH}\right]$.
A variety of ligand-to-metal bonding modes has been reported for metal β-diketiminates. The ligand may be terminal or bridging, almost invariably (but see ref. 9) monoanionic, often π-delocalised and for N, N^{\prime}-chelated complexes the metallacycle is planar or boat-shaped. β-Diketiminates are now known of 42 elements, but there is only a single phosphorus compound $\mathbf{A} .{ }^{10}$ All examples to date, bar one $\mathbf{B},{ }^{11}$ have been of N-, (N, N^{\prime})-, or (N, N^{\prime}, C)-centred ligands (but see penultimate paragraph).

A

B

Our earlier work on β-diketiminates was on N, N^{\prime}-bis(trimethylsilyl) ligands such as $\left[\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}(\mathrm{Ph})\right\}_{2} \mathrm{CH}\right]^{-}$. We chose not to use these in the present report on P (iII) chemistry, since from a 1-azaallyl precursor and a P (III) chloride there was facile loss of SiClMe_{3}, as in the formation of \mathbf{C} from $\mathrm{Li}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{CHSiMe}_{3}\right\}+\mathrm{PCl}_{3} .{ }^{12}$

We now report the synthesis and structure of the crystalline
in Scheme 1) 2, as well as $\mathbf{3}$ and the meso- (4) and rac- (5) diphosphines $\mathrm{Ph}(\mathrm{L}) \mathrm{P}-\mathrm{P}(\mathrm{L}) \mathrm{Ph} \quad\left[\mathrm{L}=\left\{\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-\right.\right.\right.$ $\left.2,6) \mathrm{C}(\mathrm{Me})\}_{2} \mathrm{CH}\right]$. Colourless crystals of $\mathbf{1}$ (> 60%) and $\mathbf{2}$ (ca. 10%) and the diketimine 3 (authentic ${ }^{14 b}$ X-ray structure) were obtained by crystallisation from hexane; the yields have not been optimised.
Each of 1 and 2 gave satisfactory microanalyses, multinuclear NMR spectral solution and mass spectral data, \dagger which were consistent with the X-ray crystal structures, \ddagger illustrated in Figs. 1 (1) and 2 (2); evidence for compounds 4 and 5 at present rests solely on their NMR spectra: $\delta\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right] 9.49$ (4) and $-23.44(5)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 293 K . We suggest that reduction of $\mathbf{1}$ proceeds sequentially by dechlorination to afford the radical $\cdot \mathrm{P}(\mathrm{L}) \mathrm{Ph}$, its coupling to yield $\mathbf{4 / 5}$ and elimination of LH , as shown in 6.
The NCCCN bond lengths in crystalline $\mathbf{1}$ are closely similar to those of $\mathbf{3},{ }^{14 b}$ with the exception of the significantly longer $\mathrm{C} 2-\mathrm{C} 3$ bond in 1. The parameters around the pyramidal phosphorus atom are unexceptional. ${ }^{15}$
The heterocyclic ring of crystalline $\mathbf{2}$ is non-planar (unlike that of the almost planar cation of the phosphonium salt \mathbf{D}^{12}) with the atom P $20.36(1) \AA$ out-of-the almost planar

Scheme 1 Reagents and conditions: i, $\mathrm{LiBu}^{\mathrm{n}}$ in $\mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$; ii, $\mathrm{PCl}_{2} \mathrm{Ph},-78{ }^{\circ} \mathrm{C}$; iii $\mathrm{C}_{8} \mathrm{~K}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)$.

Fig. 1 Molecular structure of crystalline 1. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{P}-\mathrm{Cl} 2.129(2)$, $\mathrm{P}-\mathrm{C} 2$ 1.773(5), P-C30 1.828(6), C1-C2 1.398(7), C2-C3 1.488(7), C1-N1 1.329(7), C3-N2 1.302(6); C2-P-Cl 107.90(19), C2-P-C30 102.8(2), Cl-P-C30 100.2(2), C1-C2-C3 120.7(5), C1-C2-P 114.6(4), C3-C2-P 124.3(4).

Fig. 2 Molecular structure of crystalline 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: P1-P2 2.2036(8), P1-N1 1.756(2), P2-C2 1.828(2), N1-C1 1.384(2), C1-C2 1.366(3), C2-C3 1.463(3), C3-N2 1.290(3), C18-N1 1.449(3); N1-P1-P2 93.43(6), P1-P2-C2 90.66(7), P1-N1-C1 117.97(13), N1-C1-C2 118.42(18), C1-C2-P2 117.09(15), P2-P1-C6 99.76(4), N1-P1-C6 102.27(9), P1-P2-C2 90.66(7), P1-P2-C12 96.92(7), C2-P2-C12 102.02(9).

$6\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \operatorname{Pr}_{2}^{\mathrm{i}}-2,6\right)$
D^{12}

P1N1C1C2 array. The geometrical parameters are appropriate for the illustrated structure 2 ; for example, the $\mathrm{P}-\mathrm{P}$ bond length is in the normal range for a diphosphine. ${ }^{16}$

Compound 1 may well be the first of a family of C-centred β diketiminates. The fact that mononuclear $\mathrm{P}(\mathrm{III})$ compounds are rarely four-coordinate (but see \mathbf{A}^{10}) is a pointer to new experiments; those related to i and ii of Scheme 1 involving in place of PClPh_{2} a non-metal chloride such as pivaloyl and trimethylsilyl are in hand.

We thank the Royal Society for the award of an R.S./NATO fellowship to J.E.N.

Note added to proof: In the proof stage, we became aware of a paper (also received on 4th February 2003) reporting an analogue of 2 in which the Cl atom of 2 was replaced by Ph. ${ }^{17}$

Notes and references

\dagger Selected spectroscopic data: $\mathbf{1}{ }^{1} \mathrm{H}$ NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.04-1.22$ ($4 \mathrm{~d}, 24 \mathrm{H}, \mathrm{CHCH}_{3}$), $2.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CCH}_{3}\right), 3.07\left(\mathrm{sept}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.18$ (sept, $\left.2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 6.99-7.15(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $7.75-7.80(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $15.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 20.99\left(\mathrm{~s}, \mathrm{C}_{\mathrm{CH}}^{3}\right)$, $21.30\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 23.37\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 23.46\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 24.25\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right)$,
$24.48\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 28.58\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 28.99\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 99.01\left[\mathrm{~d},{ }^{1}{ }^{1}\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right) ~ 41.5, C \mathrm{P}\right], 123.86,123.89,126.43,127.73,127.79,127.84,128.84$, $128.95,129.05,129.30,139.73,141.88$ (aromatic), 143.78 [d, ${ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)$ 33.2, ipso-C], 172.01 [d, $\left.{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right) 28.2 \mathrm{~Hz}, C \mathrm{CH}_{3}\right] ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 94.12 ; \mathrm{MS}\left(m z\left(\%\right.\right.$, assignment)): $561\left(4,[\mathbf{1}]^{+}\right)$.
$2{ }^{1} \mathrm{H}$ NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.39-1.15\left(5 \mathrm{~d}, 15 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.21-1.25(\mathrm{~m}$, $\left.9 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.10\left[\mathrm{~d},{ }^{4}{ }^{1}\left({ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right) 1.7,3 \mathrm{H}, \mathrm{CCH}_{3}\right], 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, 3.09 (sept, $2 \mathrm{H}, \mathrm{CHCH}_{3}$), 3.24 (sept, $2 \mathrm{H}, \mathrm{CHCH}_{3}$), $7.06-7.22(\mathrm{~m}, 12 \mathrm{H}$, aromatic), $7.72-7.77(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.84-7.87(\mathrm{~m}, 2 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 19.24$ [d, ${ }^{J}\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right) 2.2, \mathrm{CHCH}_{3}$], 22.60 [d, $\left.J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right) 7.7, \mathrm{CHCH}_{3}\right], 23.01\left[\mathrm{~d},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right) 10.8, \mathrm{CCH}_{3}\right], 23.63$ [d, $\left.J\left({ }^{13} \mathrm{C}-31 \mathrm{P}\right) 3.4, \mathrm{CHCH}_{3}\right], 23.97\left[\mathrm{~d},{ }^{3} J\left({ }^{13} \mathrm{C}-31 \mathrm{P}\right) 5.7, \mathrm{CCH}_{3}\right], 28.23$ [d, $\left.J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right) 3.6, \quad \mathrm{CHCH}_{3}\right], 23.41,23.53,24.25,28.75,28.89$ (5 s), 108.89-147.83 (aromatic), 162.32 [$\left.\mathrm{s}, C\left(\mathrm{CH}_{3}\right) \mathrm{N}\right], 166.44$ [d, ${ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)$ $\left.20.1 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right) \mathrm{N}\right] ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 58.89\left[\mathrm{~d},{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right)\right.$ 229.5], -11.88 [d, $\left.{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 229.5 \mathrm{~Hz}\right] ; \mathrm{MS}(m z$ (\%, assignment)): 633 (24, [2]+).
\ddagger Crystal data: 1: $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{ClN}_{2} \mathrm{P}, M=561.16$, orthorhombic, space group $\stackrel{P n a 2_{1}(N o .33), a=14.5108(8), b=25.9696(13), c=8.4582(4) \AA, ~}{\AA}=$ 3187.4(3) $\AA^{3}, Z=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha) 0.20 \mathrm{~mm}^{-1}$. Final residual was $R 1=0.056$ for the 2746 reflections with $I>2 \sigma(I)$ and $w R_{2}=0.136$ for all the 3317 reflections collected. CCDC 203507.
$2 \mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}, M=710.88$, monoclinic, space group $P 2_{1} / n$ (No.14), $a=14.5205(3), b_{\circ}=19.8810(5), c=15.4891(4) \AA, \beta=$ $110.874(1)^{\circ}, U=4178.0(2) \AA^{3}, Z=4, \mu(\mathrm{Mo}-K \alpha)=0.14 \mathrm{~mm}^{-1}$. Final residual was $R_{I}=0.048$ for 5536 reflections with $I>2 \sigma(I)$ and $\mathrm{w} R_{2}=$ 0.109 for all the 6913 reflections collected. CCDC 203508. See http:// www.rsc.org/suppdata/cc/b3/b301294h/ for crystallographic files in .cif or other electronic format.

1 L. Bourget-Merle, M. F. Lappert and J. R. Severn, Chem. Rev., 2002, 102, 3031.
2 E.g. $\left[\mathrm{Zr}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{NiMe}_{3}\right\} \mathrm{Cl}_{3}\right]$: M. F. Lappert and D.S. Liu, Netherlands Pat., 1994, 9401515; Idem, J. Organomet. Chem.1995, 500, 203.
3 V. C. Gibson, E. L. Marshall, D. Navarro-Llobet, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 2002, 4321 and references therein.
4 L. R. Rieth, D. R. Moore, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 15239 and references therein.
5 S. D. Allen, D. R. Moore, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 14284 and references therein.
6 D. J. E. Spencer, A. M. Reynolds, P. L. Holland, B. A. Jazdzewski, C. Duboc-Toia, L. L. Pape, S. Yokota, Y. Tachi, S. Itoh and W. B. Tolman, Inorg. Chem., 2002, 41, 6307 and references therein.
7 N. J. Hardman, C. Cui, H. W. Roesky, W. H. Fink and P. P. Power, Angew. Chem., Int. Ed. Engl., 2001, 40, 2172.
8 J. M. Smith, R. J. Lachicotte, K. A. Pittard, T. R. Cundari, G. LukatRodgers, K. R. Rodgers and P. L. Holland, J. Am. Chem. Soc., 2001, 123, 9222.
9 A. G. Avent, A. V. Khvostov, P. B. Hitchcock and M. F. Lappert, Chem. Commun., 2002, 1410.
10 M. Schiffer and M. Scheer, Angew Chem., Int. Ed. Engl., 2001, 40, 3413.

11 B. Räke, F. Zülch, Y. Ding, J. Prust, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, Z. Anorg. Allg. Chem., 2001, 627, 836.

12 P. B. Hitchcock, M. F. Lappert and M. Layh, J. Organomet. Chem., 1999, 580, 386.
13 No N-PIII-PIII-C=C heterocycle is listed in the Beilstein database.
14 (a) J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall, J. C. Calabrese and S. D. Arthur, Organometallics, 1997, 16, 1514; (b) M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky and P. P. Power, J. Chem. Soc., Dalton Trans., 2001, 3465.
15 (a) R. J. Wehmschulte, M. A. Khan and S. I. Hossain, Inorg. Chem., 2001, 40, 2756; (b) A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk and M. D. Roden, Eur. J. Inorg. Chem., 2001, 1729.
16 S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne and P. P. Power, J. Am. Chem. Soc., 2001, 123, 9045 any references therein.
17 P. J. Ragogna, N. Burford, M. D'eon and R. McDonald, Chem. Commun., 2003, 1052.

